489 research outputs found

    Drawing behavior and characteristics of laser-drawn polypropylene fibers

    Get PDF
    This is a preprint of an article published in JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS. 44(2): 398-408 (2005)ArticleJOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS. 44(2): 398-408 (2006)journal articl

    Berry-cluster thinning to reduce compactness of "Black Star" table grapes.

    Get PDF
    The berry-cluster thinning technique was evaluated at different phenological times to prevent bunch compactness of ?Black Star? table grape, a new somatic mutation of ?Brasil? grape. The trial was carried out during 2012 and 2013 seaons in a vineyard situated in Marialva, PR, Brazil. Vines were trained in an overhead trellis system and spaced at 3x4m. The randomized block design was used as a statistical model with five replications and five treatments. The following treatments were evaluated: control; brushing prior to anthesis; and berry-cluster thinning at different times, when berries were 3-6, 7-10, or 11-15mm in diameter. The prevalence of bunch compactness was evaluated considering the levels: loose, medium loose, and dense bunches. The main physico-chemical characteristics of grapes and yield were also appraised. The data obtained were submitted to ANOVA, and toTukey?s test at 5% was applied. So, thinning is a mandatory practice to avoid bunch compactness of ?Black Star? grapes. The technique has to be performed, preferably, by means of brushing prior to anthesis, and the failure to accomplish this practice at this time, berry-cluster thinning when berries are 11-15mm in diameter can be used. Key words: Vitis vinifera L., grape thinning, cultural practices. RESUMO: O método de raleio de bagas em diferentes fases fenológicas reduz a compactação de cachos da uva fina de mesa ‘Black Star’, uma nova mutação da uva ‘Brasil’. As videiras foram conduzidas em latada em espaçamento 3x4m, e o experimento foi realizado nas safras 2012 e 2013. O delineamento experimental consistiu em blocos casualizados, com cinco repetições e cinco tratamentos: controle sem raleio; raleio com escova plástica realizado no pré-florescimento e; despenca quando as bagas apresentavam 3-6, 7-10 ou 11-15mm de diâmetro. A compacidade predominante dos cachos foi avaliada de acordo com a seguinte classificação: cachos soltos, medianamente soltos e compactos. As características físico-químicas dos cachos e a produtividade também foram avaliadas. Os dados foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey a 5%. Verificou-se que o raleio de bagas é uma prática obrigatória na uva ‘Black Star’ para diminuir a compacidade dos cachos. A operação deve ser realizada, preferencialmente, com a escova plástica no pré-florescimento, e na impossibilidade de executar ou finalizar essa prática nesta fase, pode-se empregar a despenca quando as bagas apresentarem 11-15mm de diâmetro. Palavras-chave: Vitis vinifera L., raleio de bagas, tratos culturais

    Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders

    Get PDF
    Abstract CRISPR/Cas9 holds immense potential to treat a range of genetic disorders. Allele-specific gene disruption induced by non-homologous end-joining (NHEJ) DNA repair offers a potential treatment option for autosomal dominant disease. Here, we successfully delivered a plasmid encoding S. pyogenes Cas9 and sgRNA to the corneal epithelium by intrastromal injection and acheived long-term knockdown of a corneal epithelial reporter gene, demonstrating gene disruption via NHEJ in vivo. In addition, we used TGFBI corneal dystrophies as a model of autosomal dominant disease to assess the use of CRISPR/Cas9 in two allele-specific systems, comparing cleavage using a SNP-derived PAM to a guide specific approach. In vitro, cleavage via a SNP-derived PAM was found to confer stringent allele-specific cleavage, while a guide-specific approach lacked the ability to distinguish between the wild-type and mutant alleles. The failings of the guide-specific approach highlights the necessity for meticulous guide design and assessment, as various degrees of allele-specificity are achieved depending on the guide sequence employed. A major concern for the use of CRISPR/Cas9 is its tendency to cleave DNA non-specifically at “off-target” sites. Confirmation that S. pyogenes Cas9 lacks the specificity to discriminate between alleles differing by a single base-pair regardless of the position in the guide is demonstrated

    Structural Determination of Lysosphingomyelin-509 and Discovery of Novel Class Lipids from Patients with Niemann–Pick Disease Type C

    Get PDF
    Niemann–Pick disease type C (NPC) is an autosomal recessive disorder caused by the mutation of cholesterol-transporting proteins. In addition, early treatment is important for good prognosis of this disease because of the progressive neurodegeneration. However, the diagnosis of this disease is difficult due to a variety of clinical spectrum. Lysosphingomyelin-509, which is one of the most useful biomarkers for NPC, was applied for the rapid and easy detection of NPC. The fact that its chemical structure was unknown until recently implicates the unrevealed pathophysiology and molecular mechanisms of NPC. In this study, we aimed to elucidate the structure of lysosphingomyelin-509 by various mass spectrometric techniques. As our identification strategy, we adopted analytical and organic chemistry approaches to the serum of patients with NPC. Chemical derivatization and hydrogen abstraction dissociation–tandem mass spectrometry were used for the determination of function groups and partial structure, respectively. As a result, we revealed the exact structure of lysosphingomyelin-509 as N-acylated and O-phosphocholine adducted serine. Additionally, we found that a group of metabolites with N-acyl groups were increased considerably in the serum/plasma of patients with NPC as compared to that of other groups using targeted lipidomics analysis. Our techniques were useful for the identification of lysosphingomyelin-509

    Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.

    Get PDF
    Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studie

    De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy

    Get PDF
    Enhanced lipid biosynthesis is a characteristic feature of cancer. Deregulated lipogenesis plays an important role in tumour cell survival. These observations suggest that enzymes in the lipid synthesis pathway would be rational therapeutic targets for cancer. To this end, we review the enzymes in de novo fatty-acid synthesis and related pathways

    Imaging the Two Gaps of the High-TC Superconductor Pb-Bi2Sr2CuO6+x

    Full text link
    The nature of the pseudogap state, observed above the superconducting transition temperature TC in many high temperature superconductors, is the center of much debate. Recently, this discussion has focused on the number of energy gaps in these materials. Some experiments indicate a single energy gap, implying that the pseudogap is a precursor state. Others indicate two, suggesting that it is a competing or coexisting phase. Here we report on temperature dependent scanning tunneling spectroscopy of Pb-Bi2Sr2CuO6+x. We have found a new, narrow, homogeneous gap that vanishes near TC, superimposed on the typically observed, inhomogeneous, broad gap, which is only weakly temperature dependent. These results not only support the two gap picture, but also explain previously troubling differences between scanning tunneling microscopy and other experimental measurements.Comment: 6 page

    The Membrane-Associated Adaptor Protein DOK5 Is Upregulated in Systemic Sclerosis and Associated with IGFBP-5-Induced Fibrosis

    Get PDF
    Systemic sclerosis (SSc) is characterized by excessive fibrosis of the skin and internal organs due to fibroblast proliferation and excessive production of extracellular matrix (ECM). We have shown that insulin-like growth factor binding protein (IGFBP)-5 plays an important role in the development of fibrosis in vitro, ex vivo, and in vivo. We identified a membrane-associated adaptor protein, downstream of tyrosine kinase/docking protein (DOK)5, as an IGFBP-5-regulated target gene using gene expression profiling of primary fibroblasts expressing IGFBP-5. DOK5 is a tyrosine kinase substrate associated with intracellular signaling. Our objective was to determine the role of DOK5 in the pathogenesis of SSc and specifically in IGFBP-5-induced fibrosis. DOK5 mRNA and protein levels were increased in vitro by endogenous and exogenous IGFBP-5 in primary human fibroblasts. DOK5 upregulation required activation of the mitogen-activated protein kinase (MAPK) signaling cascade. Further, IGFBP-5 triggered nuclear translocation of DOK5. DOK5 protein levels were also increased in vivo in mouse skin and lung by IGFBP-5. To determine the effect of DOK5 on fibrosis, DOK5 was expressed ex vivo in human skin in organ culture. Expression of DOK5 in human skin resulted in a significant increase in dermal thickness. Lastly, levels of DOK5 were compared in primary fibroblasts and lung tissues of patients with SSc and healthy donors. Both DOK5 mRNA and protein levels were significantly increased in fibroblasts and skin tissues of patients with SSc compared with those of healthy controls, as well as in lung tissues of SSc patients. Our findings suggest that IGFBP-5 induces its pro-fibrotic effects, at least in part, via DOK5. Furthermore, IGFBP-5 and DOK5 are both increased in SSc fibroblasts and tissues and may thus be acting in concert to promote fibrosis

    Scanning tunneling spectroscopy of high-temperature superconductors

    Full text link
    Tunneling spectroscopy played a central role in the experimental verification of the microscopic theory of superconductivity in the classical superconductors. Initial attempts to apply the same approach to high-temperature superconductors were hampered by various problems related to the complexity of these materials. The use of scanning tunneling microscopy/spectroscopy (STM/STS) on these compounds allowed to overcome the main difficulties. This success motivated a rapidly growing scientific community to apply this technique to high-temperature superconductors. This paper reviews the experimental highlights obtained over the last decade. We first recall the crucial efforts to gain control over the technique and to obtain reproducible results. We then discuss how the STM/STS technique has contributed to the study of some of the most unusual and remarkable properties of high-temperature superconductors: the unusual large gap values and the absence of scaling with the critical temperature; the pseudogap and its relation to superconductivity; the unprecedented small size of the vortex cores and its influence on vortex matter; the unexpected electronic properties of the vortex cores; the combination of atomic resolution and spectroscopy leading to the observation of periodic local density of states modulations in the superconducting and pseudogap states, and in the vortex cores.Comment: To appear in RMP; 65 pages, 62 figure
    corecore